Bard Life Stent®
& The RESILIENT Trial:
Two-Year Update of Outcomes

Sanjoy Kundu MD, FRCPC, RPVI, FCIRSE, FSIR
LifeStent® Vascular Stent System

- The LifeStent® Vascular Stent is intended for primary stenting of de-novo or restenotic lesions of the peripheral arteries.
- Up to 170 mm length
<table>
<thead>
<tr>
<th>Stent Diameter [mm]</th>
<th>Catheter Length [cm]</th>
<th>Stent Length [mm]</th>
<th>Product Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>20</td>
<td>EX066201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>EX066301C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>EX066401C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>EX066601C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>EX066801C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>EX061001C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>EX061201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>EX061501C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>EX061701C</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>EX086201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>EX086301C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>EX086401C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>EX086601C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>EX086801C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>EX081001C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>EX081201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>EX081501C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>EX081701C</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>20</td>
<td>EX096201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>EX096301C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>EX096401C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>EX096601C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>EX096801C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>EX091001C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>EX091201C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>EX091501C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>EX091701C</td>
<td></td>
</tr>
</tbody>
</table>

For All Product Codes: 0.035" Guidewire.
LifeStent® offers Multi-Dimensional Helical Architecture
How Does Multi-Dimensional Helical Architecture Address SFA Forces?

- **Extension and Compression**
 Dynamically adapts to extension and compression of the SFA through its unique combination of helical elements.

- **Torsion**
 Lumen patency maintained during twisting of the SFA through helical strut and bridge orientation.

- **Bending**
 Avoids creating discontinuities in arterial pathways by conforming closely to new anatomical positions.

Compressive Resistance and Radial Expansion Force
Treatment of highly stenosed SFAs and resistance to external compression is facilitated by optimized stent design parameters.
A Randomized Study Comparing the Edwards Self-Expanding LifeStent vs. Angioplasty-Alone In Lesions Involving The SFA and/or Proximal Popliteal Artery

(An FDA approval protocol)
RESILIENT: Study Device

LifeStent® NT Self-Expanding Stent
Helically-Designed, Nitinol Self-Expanding Stent

Sizes Used in the Study

<table>
<thead>
<tr>
<th>Diameters</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mm</td>
<td>40, 60, 80 mm</td>
</tr>
<tr>
<td>7 mm</td>
<td>40, 60, 80 mm</td>
</tr>
</tbody>
</table>

Delivery System Used in the Study

1st Generation Coaxial System

©LifeStent is a registered trademark of C.R. Bard, Inc. or an affiliate.
RESILIENT: Trial Overview

- Lesions: SFA and/or Proximal Popliteal Artery
- Lifestyle-Limiting Claudication: Rutherford Category 1 – 3
- Lesion Length: <15 cm
- Test Device: LifeStent® NT Stent & Delivery System

206 Randomized Patients - 24 Sites (U.S. & Europe)

PTA Control
- n = 72
 - 43 PTA Only
 - 29 Bailout Stents*

LifeStent®
- n = 134

*Intention-to-Treat Analysis: Bailout stents analyzed as randomized
RESILIENT: Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Control Group (Pts. =72)</th>
<th>Test Group (Pts. =134)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male / Female</td>
<td>66.7% / 33.3%</td>
<td>70.9% / 29.1%</td>
<td>0.53 ^</td>
</tr>
<tr>
<td>Age, (years) μ ± S.D.</td>
<td>66.1 ± 9.2</td>
<td>68.4 ± 9.9</td>
<td>0.11 +</td>
</tr>
<tr>
<td>Hypertension</td>
<td>91.7%</td>
<td>83.6%</td>
<td>0.14 #</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>73.6%</td>
<td>78.4%</td>
<td>0.49 #</td>
</tr>
<tr>
<td>Smoker</td>
<td>83.3%</td>
<td>71.6%</td>
<td>0.09 #</td>
</tr>
<tr>
<td>Coronary Artery Disease</td>
<td>54.2%</td>
<td>56.0%</td>
<td>0.88 #</td>
</tr>
<tr>
<td>Diabetes</td>
<td>38.9%</td>
<td>38.1%</td>
<td>1.00 #</td>
</tr>
</tbody>
</table>

Rutherford Category:

- **Control**:
 - Rutherford 1: 6.9%
 - Rutherford 2: 41.7%
 - Rutherford 3: 50.0%

- **Test**:
 - Rutherford 1: 3.0%
 - Rutherford 2: 35.8%
 - Rutherford 3: 61.2%

^ = Chi Square Test
+ = t-test for Equality of Means
= Fisher´s Exact Test
RESILIENT: Lesion Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Control Group (Lesions=81)</th>
<th>Test Group (Lesions=153)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Lesion Length (per pt.)</td>
<td>6.4 cm ± 4.0</td>
<td>7.1 cm ± 4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Vessel RVD</td>
<td>5.1 mm ± 0.7</td>
<td>5.2 mm ± 0.8</td>
<td>0.64</td>
</tr>
<tr>
<td>Lesion % Diameter Stenosis</td>
<td>74.5% ± 18.2</td>
<td>72.7% ± 17.6</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Lesion Calcification†

- **PTA Group**: 8% none/mild, 32% moderate/severe, 60% no data
- **LifeStent® Group**: 2% none/mild, 35% moderate/severe, 63% no data

† = Core Lab Analysis
+ = t-test for Equality of Means
= Fisher’s Exact Test
• Data from the bailout stenting cases were included in the Control Arm (as randomized)

• Bailout stenting was considered a target lesion revascularization (TLR) & patency failure:
 – Immediate need for additional intervention, and
 – Loss of flow \((\text{residual stenosis} > 30\% \text{ after repeated inflations}) \)

• The need for bailout stenting was confirmed by:
 – Angiographic core lab and clinical events committee (93%), or
 – Study site documentation in two patients (7%)
Bailout Lesion Characteristics*

Mean Lesion Length (mm)

- PTA only (n=47): 47.7 ± 32.6
- PTA-Bailout-Stent (n=34): 70.3 ± 38.8
- LifeStent (n=153): 61.8 ± 42.5

Mean Lesion Length / Patient (mm)

- PTA only (n=43): 52.0 ± 38.2
- PTA-Bailout-Stent (n=29): 82.8 ± 37.8
- LifeStent (n=134): 70.5 ± 44.3

Bailout lesions were significantly longer than the PTA-only lesions

* = Site Reported
+ = Statistically Significant
Bailout Lesion Characteristics

Lesion Calcification

PTA Only

- none/mild: 23%
- moderate/severe: 68%
- no data: 9%

Bailout Stent

- none/mild: 7%
- moderate/severe: 48%
- no data: 45%

Bailout lesions tended to be more heavily calcified than the PTA-only lesions.
Bailout stenting patients tended to have more severe claudication than the PTA-only patients.
RESILIENT: Peri-Procedural Results

<table>
<thead>
<tr>
<th>Measure (per lesion)</th>
<th>PTA Group</th>
<th>LifeStent® Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion Success †(%) residual stenosis < 30%</td>
<td>85.5% (59/69)</td>
<td>96.3% (131/136)</td>
<td>.0087#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure (per patient)</th>
<th>PTA Group</th>
<th>LifeStent® Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure Success †(%) residual stenosis < 30% and no peri-procedural complications</td>
<td>83.9% (52/62)</td>
<td>95.8% (114/119)</td>
<td>.0092#</td>
</tr>
</tbody>
</table>

Mean Stented Length: 9.9 cm (± 5.0)

†Core Lab Analysis: 119 test and 62 control patients had angiograms that could be evaluated by the core lab

Fisher’s Exact Test; p-values based on two-sided test
Target Lesion Revascularization (TLR):
- “Clinically-driven” repeat intervention of the target lesion

Major Adverse Clinical Event (MACE):
- Death, stroke, MI, significant distal embolization, emergent surgical revascularization of the limb, thrombosis, and Rutherford category worsening post-procedure.

Patency:
- DUS Peak Systolic Velocity (PSV) ratio < 2.5. Failure of primary patency is a TLR or restenosis greater than 50% (PSV > 2.5).

Clinical Success:
- An improvement of baseline symptoms by at least one Rutherford category and sustained through follow-up (with no additional intervention).
RESILIENT: Freedom from TLR 24m

Kaplan-Meier Survival Analysis; p-value from log rank test

PTA
LifeStent

12 Month 24 Month

PTA
LifeStent

45%
87%
42%
78%

12 Month 24 Month

p<.0001
p<.0001

24 Months

RESILIENT:
Freedom from TLR 24m

p<.0001

Kaplan-Meier Survival Analysis; p-value from log rank test
RESILIENT: Freedom from MACE 24m

Kaplan-Meier Survival Analysis; p-value from log rank test

12 Month 24 Month
PTA
LifeStent

86% 86%
p=.91
82% 79%
p=.60

24 Months

PTA
LifeStent
RESILIENT: Primary Patency*

#Primary patency: Continuous blood flow through the treated area assessed by duplex ultrasound (DUS):

- **6 Month**
 - PTA: 47%
 - LifeStent: 94%
 - *p<.0001*

- **12 Month**
 - PTA: 37%
 - LifeStent: 81%
 - *p<.0001*

Kaplan-Meier Survival Analysis; p-value from log rank test
Stent Fractures: 18-Month Analysis*

<table>
<thead>
<tr>
<th>Fracture Type</th>
<th>Total 0-18 months</th>
<th>2 or more overlapping stents</th>
<th>Stent Elongation at deployment</th>
<th>Locations^</th>
<th>Lesion Moderate - Severe Calcification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>5</td>
<td>1 of 5</td>
<td>1 of 5</td>
<td>MMMMMD</td>
<td>3 of 5</td>
</tr>
<tr>
<td>Type II</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type IV</td>
<td>6</td>
<td>4 of 6</td>
<td>6 of 6</td>
<td>MMMMMMP</td>
<td>4 of 6</td>
</tr>
</tbody>
</table>

0-12 months vs 0-18 months

<table>
<thead>
<tr>
<th></th>
<th>0-12 months</th>
<th>0-18 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractured Stents</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Fracture Rate^#</td>
<td>3.1%</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

^fractures / 287 stents evaluated by the angiographic core lab

* Per Core Lab Analysis at 6, 12, & 18 Months

^M=Mid SFA; D=Distal SFA; P=Popliteal
RESILIENT: Clinical Success

*Clinical Success: Sustained improvement of at least one Rutherford category above the pre-treatment value. Also, a repeat intervention was considered a loss of clinical success.

Fisher’s Exact Test; p-values based on two-sided test
“Longer” and/or “more calcified” lesions did not respond sufficiently to a PTA-only strategy:
- The bailout stenting rate in the Control Group was 40.2%

A low fracture rate: 3.8% at 18 months
- Observed fractures may be partially explained by elongation of the stent at deployment.
- A “One Stent” strategy is recommended when possible.
In claudicants with SFA/proximal popliteal lesions ≤ 15 cm, primary stenting with the LifeStent® Self-Expanding Stent was superior to a PTA-only strategy:

- At One Year: evidenced by primary patency & freedom from TLR
- At Two Years: evidenced by freedom from TLR & sustained clinical success
- The LifeStent® Self-Expanding Stent did not lead to a higher rate of Major Adverse Clinical Events than PTA alone

A PTA-only strategy has a role in patients with less complex lesions (e.g., shorter, less severely calcified).